Mutations in the non-nucleoside binding-pocket interfere with the multi-nucleoside resistance phenotype.
نویسندگان
چکیده
OBJECTIVES To investigate the genotypic and phenotypic effects of in vitro resistance selection with lamivudine and/or the second generation non-nucleoside reverse transcriptase inhibitor (NNRTI) quinoxaline HBY097 using HIV-1 isolates carrying the multi-nucleoside resistance pattern linked to the Q151M mutation. METHODS Virus strains were selected in C8166 cells in the presence of increasing concentrations of lamivudine or HBY097. In parallel control experiments, the virus was cultured in C8166 cells in the absence of drugs. The entire reverse transcriptase encoding region was amplified using polymerase chain reaction and was subsequently sequenced. Antiviral activities of drugs were evaluated in C8166 cells. RESULTS High-level resistant viruses were selected rapidly in the presence of lamivudine and quinoxaline (less than 10 passages). The multi-nucleoside resistance mutations were stable during in vitro resistance selection. Lamivudine elicited the acquisition of the M184I mutation. Phenotypic resistance to all nucleoside-analog reverse transcriptase inhibitors (NRTIs) was increased when M184I was added to the multi-nucleoside resistance background in the absence of NNRTI-resistance mutations. In most cases of HBY097 resistance selection, at least two mutations associated with NNRTI resistance resulted in high-level NNRTI resistance. The NNRTI resistance-related mutations partially reversed the phenotypic resistance to most NRTIs, except to abacavir. The addition of the M184I mutation to the NNRTI-multi-nucleoside resistance set abolished this antagonizing effect for didanosine, zalcitabine and lamivudine, but further potentiated the phenotypic reversal for zidovudine and stavudine. CONCLUSION Changes in the non-nucleoside binding pocket must affect the conformation of residues at the dNTP binding site, and can result in a partial phenotypic reversal of the multi-nucleoside resistance phenotype.
منابع مشابه
Drug-Resistant HIV-1 RT Gene Mutations in Patients under Treatment with Antiretroviral Drugs (HAART) in Iran
Abstract Background and Objective: Highly Active Antiretroviral Therapy (HAART) can effectively prevent the progression of HIV-1 replication and increase life expectancy. There are numerous causes of treatment failure and the leading one is drug resistance. Thus, we aimed to determine the HIV RT gene drug resistance mutations in patients treated with antiretroviral medications. Material...
متن کاملDrug- Resistance- Associated Mutations and HIV Sub-Type Determination in Drug-Naïve and HIV-Positive Patients under Treatment with Antiretroviral Drugs
Abstract Background and Objective: Resistance to antiretroviral agents is a significant concern in clinical management of HIV-infected individuals. Resistance is the result of mutations that develops in the viral protein targeted by antiretroviral agents. Material and Methods: In this cross-sectional study, the blood samples of 40 HIV-positive patients were collected. Twenty of them were d...
متن کاملEffect of a bound non-nucleoside RT inhibitor on the dynamics of wild-type and mutant HIV-1 reverse transcriptase.
HIV-1 reverse transcriptase (RT) is an important target for drugs used in the treatment of AIDS. Drugs known as non-nucleoside RT inhibitors (NNRTI) appear to alter the structural and dynamical properties of RT which in turn inhibit RT's ability to transcribe. Molecular dynamics (MD), principal component analysis (PCA), and binding free energy simulations are employed to explore the dynamics of...
متن کاملMechanisms of resistance to nucleoside analogue inhibitors of HIV-1 reverse transcriptase.
Human immunodeficiency virus (HIV) reverse transcriptase (RT) inhibitors can be classified into nucleoside and nonnucleoside RT inhibitors. Nucleoside RT inhibitors are converted to active triphosphate analogues and incorporated into the DNA in RT-catalyzed reactions. They act as chain terminators blocking DNA synthesis, since they lack the 3'-OH group required for the phosphodiester bond forma...
متن کاملHIV-1 reverse transcriptase (RT) polymorphism 172K suppresses the effect of clinically relevant drug resistance mutations to both nucleoside and non-nucleoside RT inhibitors.
Polymorphisms have poorly understood effects on drug susceptibility and may affect the outcome of HIV treatment. We have discovered that an HIV-1 reverse transcriptase (RT) polymorphism (RT(172K)) is present in clinical samples and in widely used laboratory strains (BH10), and it profoundly affects HIV-1 susceptibility to both nucleoside (NRTIs) and non-nucleoside RT inhibitors (NNRTIs) when co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- AIDS
دوره 15 5 شماره
صفحات -
تاریخ انتشار 2001